
6106 

ciently and with complete retention ofchirality^b by the se­
quence 1-4 (Scheme I). 

Attempts at the direct displacement of (—)-ir-bromocam-
phor (4) or its 1,3-dioxolane derivative with dimethyl malonate 
anion failed. Therefore, we prepared (—)-7r-iodocamphor (5) 
using a threefold excess of anhydrous potassium iodide10 in 
freshly distilled dimethylformamide (DMF) at 110 0C in 
nearly quantitative yield (Scheme II). In contrast to the bromo 
derivative, reaction of the latter intermediate with 10 equiv of 
the sodium salt of dimethyl malonate in refluxing DMF (17 
h) provided (-)-keto ester 61 U 2 (60%). The displacement was 
accompanied by concommitant decarbomethoxylation (pre­
sumably via attack of displaced iodide on the initially formed 
diester13). Oximation of 6 was carried out by standard means 
and the resultant (-f-)-oximino ester (7)14 exposed top-tolu-
enesulfonyl chloride in pyridine to induce Beckmann frag­
mentation16 (70%). The resultant mixture of double bond 
isomers (8 and 9) readily converged to the more stable endo-
cyclic (-)-cyano ester 9 when treated with anhydrous triflu-
oroacetic acid. Cyclization of 9 to (+)-cyano ketone 10 pro­
ceeded unidirectionally in 70% yield" using potassium tert-
butoxide in tetrahydrofuran. The use of similar C,D inter­
mediates in the total synthesis of steroids has been dealt with 
elsewhere.4c,d For example, in a preliminary study on the 
subsequent deployment of 10, we have found that it reacts 
readily with methyl vinyl ketone17 to afford a mixture of tri-
cyclenone 11 and hydroxy ketone 12 and that the latter sub­
stance can be dehydrated to 11 when exposed to POCb-pyri-
dine. Further studies to utilize these intermediates in the total 
synthesis of several steroids is under active investigation. 
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An Experimental Determination of 
"Bonding Charge" in Carbon-Carbon Bonds 

Sir: 

Many attempts have been made to understand the nature 
of the chemical bond by correlating bond length with theo­
retically derived quantities such as bond order, electronega­
tivity, hybridization, and ionic character.1 In this communi­
cation we provide estimates of the amount of charge in various 
C-C bonds and a correlation between bonding charge and bond 
length, both quantitites being experimentally derived. 

In recent years accurate x-ray (and neutron) diffraction 
measurements together with the development of various 
computational techniques2 have led to a significant progress 
in determining the electron density distribution in a chemical 
bond. Electron density difference maps3 may be exploited for 
the calculation of derived quantities as net molecular or ionic 
charges, dipole and quadrupole moments, atom populations, 
and "bonding charge" in bonds. Very little has been done in 
this area, which is still in the stage of definitions and develop­
ment of methods.4 

The "net bonding charge"—the amount of charge which 
migrates to the region between bonded atoms on formation of 
a molecule—may be defined as the excess charge which ac­
cumulates between bonded atoms over the amount that would 
have occurred in these regions as a consequence of superposi­
tion of spherical atoms. 

An estimate of the "bonding charge", as defined above, may 
be obtained from the deformation maps3 by integrating the 
positive difference density over the volume of the bond. In cases 
where the excess density in the bond is completely surrounded 
by a surface of zero deformation density,40 the region of inte­
gration is uniquely defined; where the bonding peak is not 
confined to the region between two bonded atoms, e.g., peaks 
of adjacent bonds merge,6b the number of electrons obtained 
is affected somewhat by the choice of the integration 
boundaries.7 

We have estimated the number of "bonding electrons" in 
various C-C bonds of several molecules whose electron-density 
distributions were mapped4b'c'5'6 using accurate x-ray data 
measured at low temperatures4b'c'6-8 and room temperature.9 

The bond lengths varied between 1.26 and 1.57 A.10a The 
standard deviation in the charge was estimated to be 0.03 e in 
tetraphenylbutatriene.'0b 

Figure 1, which presents a plot of bonding charge vs. bond 
length, summarizes the results of this study. Three principal 
conclusions may be drawn from this plot, which almost falls 
on a smooth line, (a) The number of "bonding electrons", as 
defined above, is relatively small; only a fraction of one electron 
accumulates in the bond; 0.1-0.3 e1' were found in the range 
(1.57-1.26 A) investigated.12 (b) It is possible to correlate the 
number of bonding electrons with bond length in C-C bonds 
belonging to entirely different molecules varying widely in 
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bond length (A) 

Figure 1. A plot of bonding charge vs. bond length: TP, tetraphenylbuta-
triene;4c AD, allenedicarboxylic acid-acetamide;6a PN, p-nitropyridine 
oxide;6d D, diamond;6d TCB, tetracyanocyclobutane;4" P, perylene;60 BCB, 
a bicyclobutane derivative, exo,exo-l,3-diethylbicyclobutane-2,4-di-
carboxylic acid.6b 

chemical structure, (c) The number of bonding electrons in 
various C-C bonds falls off almost linearly with increasing 
bond length. Assuming the points to lie on a straight line (y = 
0.686* + 1.152 where y is the charge and x is the bond length) 
yields a scatter, (SA2/(/i - I))1/2, n = 16, of 0.026e which 
compares favorably with the estimated standard deviation 
computed for tetraphenylbutatriene. 

A similar correlation between the charge in the bond and 
its length is suggested by a simple electrostatic model of the 
chemical bond, which supposes that a chemical bond is a result 
of accumulation of negative charge in the region between 
bonded atoms to an extent sufficient to balance the nuclear 
forces of repulsion.14 
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Chemically Initiated Electron Exchange 
Luminescence. A New Chemiluminescent Reaction Path 
for Organic Peroxides 

Sir: 

We would like to report an efficient new chemiluminescent 
reaction that delineates an apparently important class of 
chemiluminescent processes and provides insight into several 
previously reported light-producing reactions. In general, the 
exothermic decomposition of peroxides to generate directly 
electronically excited-state carbonyl compounds has formed 
the basis for nearly all of organic chemiluminescence.1 In this 
communication we will outline a reaction sequence in which 
diphenoyl peroxide (1) undergoes chemically initiated electron 
exchange with an aromatic hydrocarbon to form directly the 
electronically excited singlet state of the hydrocarbon which, 
in turn, emits a photon of visible light. 

Thermolysis of a dilute solution of diphenoyl peroxide2 in 
CH2CI2 at ~24 0C for 24 h resulted in the formation of ben-
zocoumarin (2) in 75% yield3 and polymeric peroxide (eq 1). 

+ CO2 + Polymer (1) 

Under these conditions there was virtually no chemilumines­
cence from this reaction. However, addition of certain aromatic 
hydrocarbons (see Figure 2) to the reaction mixture resulted 
in efficient light formation. The spectrum of the emission 
corresponds in all of the cases studied to the fluorescence of the 
added hydrocarbon. 

Such an observation is not unique among chemiluminescent 
systems and has been attributed to electronic energy transfer 
to the added hydrocarbon from a product molecule formed in 
an excited state. However, in this case, the unusual observation 
was made that, while 9,10-diphenylanthracene (DPA) was 
quite effective at promoting light formation, 9,10-dibro-
moanthracene and biacetyl were essentially completely inef­
fective.4 Moreover, incorporation of the aromatic hydrocarbon 
in the reaction solution increased the rate of consumption of 
the diphenoyl peroxide. These observations indicate a special 
interaction of the aromatic hydrocarbon with the peroxide 
rather than simple energy transfer as the light-forming step. 

The chemiluminescence observed from peroxide 1 and ar­
omatic hydrocarbons is strictly first order in peroxide con-
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